
 Stage 1 Predicates

IT Training, Consulting and Mentoring www.cbi4you.com IT Training, Consulting and Mentoring www.cbi4you.com

SQL Coding
Quick Reference

Card

Computer Business International, Inc.
www.cbi4you.com
866.CBI.4YOU
(Toll Free 866.224.4968)

General Rules about Predicate Evaluation
 1. In terms of resource usage, the earlier a predicate is
evaluated, the better.
 2. Stage 1 predicates are better than stage 2 because they
qualify rows earlier and reduce the amount of processing
needed at stage 2.
 3. When possible, try to write queries that evaluate the most
restrictive predicates first. When predicates with a high filter
factor are processed first, unnecessary rows are screened as
early as possible. This can reduce processor cost at a later
stage. However, a predicates restrictiveness is only effective
among predicates of the same type and the same evaluation
stage.

Order of Predicate Evaluation
 The first set of rules:
 1. Indexable predicates are applied first. All matching
predicates on index key columns are applied first and eval-
uated when the index is accessed.
 2. Other stage 1 predicates are applied next.
 a. First, stage 1 predicates that have not been picked as
matching predicates but still refer to index columns are applied
to the index. This is called index screening. In general, DB2
chooses the most restrictive predicate as the matching predicate.
All other predicates become index-screening predicates.
 b. After data page access, stage 1 predicates are applied to
the data.
 3. Finally, the stage 2 predicates are applied on the
returned data rows.

After both sets of rules are applied, predicates are
evaluated in order in which they appear in the query.
Because you specify that order, you have some control
over the order of evaluation.
 Predicate types
The type of a predicate depends on its operator or syntax, as
listed below. The type determines what precessing and filtering
occurs when the predicate is evaluated.
Type Definition
• Subquery Any predicate that includes another
 SELECT statement. Example: C1 IN (SELECT C10
 FROM TABLE1)
• Equal Any predicate that is not a subquery predicate,
 has an equal operator and no NOT operator. Also
 included are predicates of the form C1 IS NULL.
 Example: C1=100
• Range Any predicate that is not a subquery predicate
 and has an operator in the following list: >, =>, <, <=,
 LIKE, or BETWEEN.
• IN-list A predicate of the form: column IN (list of
 values). Example: C1 IN (5,10,15)
• NOT Any predicate that is not a subquery predicate
 and contains a NOT operator. Example: COL1 <> 5 or
 COL1 NOT BETWEEN 10 AND 20.
In the Predicate type charts that follow, the following
terms are used:
non subq means a noncorrelated subquery.
cor subq means a correlated subquery.
op is any of the operators >,>=, <,<=, ¬>, ¬<
value is a constant, host variable, or special register.
pattern is any character string that does not start with
the special characters for percent (%) or underscore(_).
char is any character string that does not start with the
special for percent(%) or underscore(_).
predicate is a predicate of any type.
expression is any expression that contains arithmetic operators,
scalar functions, column functions, concatenation operators,
columns, constants, host variables, special registers, date or time
expressions.
noncol expr is a noncolumn expression, which is any expression
that does not contain a column. That expression can contain arith-
metic operators, scalar functions, concatenation operators, constants,
host variables, special registers, date or time expressions.
an example of a noncolumn expression is:
CURRENT DATE - 50 DAYS

COL BETWEEN value1 AND value2 Y Y

COL BETWEEN noncol expr 1 AND noncol expr 2 Y Y

COL BETWEEN expr-1 AND expr-2 Y Y

COL LIKE ‘pattern’ Y Y

COL IN (list) Y Y

COL IS NOT NULL Y Y

COL LIKE host variable Y Y

COL LIKE UPPER (‘pattern’) Y Y

COL LIKE UPPER (host-variable) Y Y

COL LIKE UPPER (SQL-variable) Y Y

COL LIKE UPPER (global-variable) Y Y

COL LIKE UPPER (CAST(‘pattern’ AS data-type)) Y Y

COL LIKE UPPER (CAST(host-variable AS data-type)) Y Y

COL LIKE UPPER (CAST(SQL-variable AS data-type)) Y Y

COL LIKE UPPER (CAST(global-variable AS data-type)) Y Y

T1.COL = T2.COL Y Y

T1.COL op T2.COL Y Y

T1.COL = T2 col expr Y Y

T1.COL op T2 col expr Y Y

COL = (noncor subq) Y Y

COL op (noncor subq) Y Y

COL = ANY (noncor subq) Y Y

(COL1,...COLn) IN (noncor subq) Y Y

COL = ANY (cor subq) Y Y

COL IS NOT DISTINCT FROM value Y Y

COL IS NOT DISTINCT FROM noncor expr Y Y

T1.COL1 IS NOT DISTINCT FROM T2.COL2 Y Y

T1.COL1 IS NOT DISTINCT FROM T2 col expr Y Y

COL IS NOT DISTINCT FROM (noncor subq) Y Y

SUBSTR(COL.,1,n) op value SUBSTR (COL,1,n) = value Y Y

DATE(COL) = value Y Y

DATE(COL) op value Y Y

YEAR(COL) = value Y Y

YEAR(COL) op value Y Y

COL NOT LIKE ‘char’ N Y

COL LIKE ‘%char’ N Y

COL LIKE ‘_char’ N Y

T1.COL <> T2 col expr N Y

COL op ANY (noncor subq) N Y

COL op ALL (noncor subq) N Y

COL IS DISTINCT FROM value N Y

COL IS DISTINCT FROM (noncor subq) N Y

COL BETWEEN COL1 AND COL2 N N

value NOT BETWEEN COL1 AND COL2 N N

value BETWEEN col expr and col expr N N

T1.COL <> T2.COL N N

T1.COL1 = T1.COL2 N N

T1.COL1 op T1.COL2 N N

T1.COL1 <> T1.COL2 N N

COL = ALL (noncor subq) N N

COL <> (noncor subq) N N

COL <> ALL (noncor subq) N N

COL NOT IN (noncor subq) N N

COL = (cor subq) N N

COL = ALL (cor subq) N N

COL op (cor subq) N N

COL op ANY (cor subq) N N

COL op ALL (cor subq) N N

COL <> (cor subq) N N

COL <> ANY (cor subq) N N

(COL1,..COLn) IN (cor subq) N N

COL NOT IN (cor subq) N N

(COL1,..COLn) NOT IN (cor subq) N N

T1.COL1IS DISTINCT FROM T2.COL2 N N

T1.COL1 IS DISTINCT FROM T2 col expr N N

COL IS NOT DISTINCT FROM (cor subq) N N

EXISTS (subq) N N

expression = value N N

expression <> value N N

expression op value N N

expression op (subq) N N

NOT XMLEXISTS XMLEXITSTS N N

CASE expression WHEN expression ELSE expression
END = value

N N

The second set of rules describes the order of predicate
evaluation within each of the above stages:
1. All equal predicates (including column IN list, where
list has only one element).
2. All range predicates and predicates of the form column
IS NOT NULL.
3. All other predicate types are evaluated.

 Indexable Predicates
 Predicate Type indexable stage 1

COL = value Y Y

COL = noncol expr Y Y

COL IS NULL Y Y

COL op value Y Y

COL op noncol expr Y Y

value BETWEEN COL1 AND COL2 Y Y

DB2 Version 12
REV: August 2019

COL <> value N Y

COL <> NONCOL EXPR N Y

COL NOT BETWEEN value 1 AND value 2 N Y

COL NOT IN (list) N Y

 Predicate Type indexable stage 1

 Stage 2 Predicates
 Predicate Type indexable stage 1

IT Training, Consulting and MentoringIT Training, Consulting and Mentoring www.cbi4you.com www.cbi4you.com

 SQL Coding Guidelines
 1. Select only what you need. Make sure no unused
 columns are selected.
 2. Avoid unneeded SELECT DISTINCT sorts. Ask yourself
 why you are getting duplicates in your results and
 whether the duplicates are appropriate. If your results
 contain duplicates that are not a true reflection of your
 data content, it could indicate an error in your SQL logic.
 3. Avoid unnecessary constants in your SELECT list.
 Keep	your result row length to a minimum.
 4. Ensure your predicate is in the appropriate format for
 a search condition.
 5. Make sure the length of any host variables or constants
 is no greater than the length attribute of the data
 column it is compared to.
 6. Code constants in your predicate, not as a host variable.
 If DB2 knows the absolute value you are looking for it
 can perform a more accurate I/O estimate - possibly
 changing the access path.
 7. If possible keep your comparisons positive instead of
 negative. Negative comparisons have a negative effect
 on performance.
 8. Avoid unnecessary sorts; if possible match your ORDER
 BY to an Index. Avoid using derived result columns to
 order your data. Use the UNION ALL where possible,
 instead of UNION.
 9. When possible, match the combination of WHERE
 clause predicate columns and ORDER BY columns
 to your indexes.
10. Avoid using the indexed columns of your predicate in an
 expression. Whenever possible apply the expression to
 the non-column value. Columns used in an expression
 (mathematical, function, labeled duration or CASE)
 cannot be used for index access.
11. Code your predicate as simply as possible.
12. Code as many Indexable predicates as possible.
13. Code your predicate in DB2’s evaluation sequence, most
 restrictive predicate first, least restrictive last.
14. Code 2 or more solutions for each requirement.
15. EXPLAIN and test all SQL before embedding into your
 application program.
16. Code with the attitude “I can do this in one SQL
 statement” - do not use DB2 as just another access
 method; push as much of the logic into your SQL as
 you can. To maximize DB2 performance you need to
 let DB2 handle the majority of the work. The more
 work done in DB2, the less overhead in terms of data
 returned and cross-memory calls.

ӺӺ Put as much work in the SQL as feasible.
ӺӺ Perform Joins
ӺӺ Apply predicates
ӺӺ Perform calculations in the select list

ӺӺ Perform data transformation in the select list.

17. Avoid/Perform Sorts as needed.
18. Joined columns should be of the same data type and
 length.
19. Verify that all row filtering is applied as early as
 possible - in the ON clause if needed.
20. Code your Join Tables in the sequence you want DB2
 to access them. The order of tables or views in the
 FROM CLAUSE can affect the access path. If your
 query performs poorly, it could be because the join
 sequence is inefficient. You can determine the join
 sequence within a query block from the PLANNO
 column in the PLAN_TABLE. If you think that the
 join sequence is inefficient, try rearranging the order
 of the tables and views in the FROM clause to match
 a join sequence that might perform better. Rearranging
 the columns may also cause DB2 to select the better
 join sequence.
21. Avoid unnecessary nested table expressions. Use
 them effectively to create a small subset or to influence
 the join sequence.
22. Match your Join and Row filtering predicates to your
 Indexes. You may want to request that an additional
 column or two be added to an existing index to achieve
 Index Only access.
23. Add Transitive Closure predicates where appropriate.
 DB2 performs predicate transitive closure only on
 equal and range predicates. Other types of predicates,
 such as IN or LIKE predicates, might be needed.
24. Verify the Join Method Chosen by DB2. If DB2 did not
 choose the method you intended, check your catalog
 statistics for Clustering Index, Cluster ratio and cardinality.
25. Review your Explain Results with your DBA. If you
 do not get the results you want, work with your DBA
 to achieve appropriate performance. With accurate
 statistics and appropriate SQL coding DB2 can
 make extremely accurate access path choices.
 However, if the SQL statement is poorly coded or the
 statistics in the DB2 catalog are inaccurate DB2
 cannot optimally perform access path selection.
26. Use subqueries for what are suited - not as documentation.
27. If a subquery can be coded as a join - DO IT!
28. If there are multiple subqueries in any parent query,
 make sure that the subqueries are ordered in the
 most efficient manner. DB2 always performs all
 noncorrelated subquery predicates before correlated
 subquery predicates, regardless of coding order.
29. If your query involves column functions, make sure
 that they are coded as simply as possible. This
 increases the chances that they will be evaluated
 when the data is retrieved, rather that afterward.

30. When working with large objects, avoid materialization
 of unneeded portions of the entire object - use
 LOCATE and or POSSTR where appropriate.
31. Use functions in the WHERE clause with discretion -
 most are stage 2 predicates.
32. Use variance and standard deviation with care: The
 VARIANCE and STTDEV functions are always evaluated
 late (that is, COLUMN_FN_EVAL is blank). This causes
 other functions in the same query block to be evaluated
 late as well. For example, in the following query, the
 sum function is evaluated later than it would be if
 the variance function were not present: SELECT
 SUM(C1), VARIANCE(C1) FROM T1;
33. Having Clauses not used in selection paths.
34. Verify that appropriate statistics are available:
 RUNSTATS....KEYCARD FREQVAL
35. Consult your DBA before attempting to use optimizer
 HINTS.
36. Check your SQLCODEs after every SQL statement!
 Don’t assume!
37. Sort Input files in table Cluster Sequence. If the next
 row you need is on the same DB2 page it may still be
 in the buffer and DB2 will not have to perform a
 physical I/O. Async vs Sync I/O.
38. Use DCLGENs. This guarantees you are using host
 variables that are defiined appropriately for the
 columns referenced.
39. When a value is fixed, code it as a literal - not as a
 valued host variable. This can improve the access
 path selection process. An absolute value filter
 factor is more accurate than an unknown.
40. Open Cursors as close to the First Fetch as possible.
 Resources are acquired at OPEN cursor time.
41. Include the QUERYNO clause in embedded SQL.
42. Avoid program, stage 3 predicates: Think DB2 - use
 appropriate joins. Do not query the first table, take
 the contents and query the next table, etc. The
 excessive API calls to DB2 are expensive and hinders
 DB2 ability to optimize your requirement.
43. Eliminate the unnecessary:

ӺӺ Avoid unnecessary counts. How many rows 	
	 deleted? updated? Inserted? Use the SQLCA: 	
	 SQLERRD(3) field instead.

ӺӺ Avoid unnecessary SELECTs before UPDATE. 	
	 SQLCODE + 100 will tell you if it does not exist.

ӺӺ Avoid unnecessary SELECTs before DELETE. 	
	 SQLCODE + 100 will tell you if it does not exist.

ӺӺ Avoid unnecessary SELECTs before INSERT. 	
 SQLCODE -803 will tell you if it already exists.

ӺӺ Avoid unnecessary random reads. If you are 	
	 creating your own singleton select loop you 	
	 probably should be using a cursor.

ӺӺ Avoid unnecessary existence checking. Ask 	
	 yourself - Why are you checking?

44. Avoid ambiguous cursors. Declare all cursors with
 the FOR READ ONLY or UPDATE OF clause.
45. If possible, replace mass delete batch programs
 with the REORG DISCARD utility.
46. If possible, replace mass insert batch programs
 with the LOAD utility.
47. Access Data in a Consistent Order. This will
 minimize the chances of deadlocks occurring.
48. Commit work as soon as practical. This frees your
 held locks and minimizes the potential of other
 processes receiving a timeout due to your held locks.
49. Bind options should be part of your Application Design.
 Choose your options based on the environment you
 are working with and the application requirements.
50. Use Isolation Level UR where appropriate.
51. Update data at the end of the logical unit of work
 (as late as possible). This prevents acquiring your
 locks too early and holding them longer than
 necessary.
52. Close Cursors as soon as possible. This frees up
 held resources.
53. Roll back work as soon as an error is detected. This
 frees up held resources and guarantees data integrity.
54. Know your SQL coding rules.

 SQL Coding Rules
 RULE 1. Know your data
 RULE 2. Know how your data is used
 RULE 3. Never say NEVER and
 Never say ALWAYS
 RULE 4. RTFM

DB2 is a registered trademark of IBM

©Copyright Computer Business International, Inc. 2001-2017.
All rights reserved.

1.866.224.4968

